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Abstract. We investigate recurrence phenomena in coupled two degrees of freedom systems. It is shown
that an initial well localized wave packet displays recurrences even in the presence of coupling in these
systems. We discuss the interdependence of time scales namely classical period and quantum revival time
and explain the significance of initial conditions.
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Coherent structures

Characteristics of quantum systems, which exhibit chaos
in classical domain, have posed interesting questions for
researchers. In one of these systems, namely, hydrogen
atom in microwave field, the discovery of phenomenon
of quantum dynamical localization [1] proved as a land
mark in the young field of quantum chaos. Fishman et al.
connected dynamical localization with Anderson localiza-
tion [2], and proved it to be a generic property of periodi-
cally driven quantum systems. Later, the phenomenon was
experimentally observed [3]. In this paper, we develop ana-
lytical treatment for quantum recurrence phenomena [4,5]
in systems which may exhibit chaos in classical domain
and thus establish the phenomena generic to these sys-
tems.

Quantum recurrences originate from the simultaneous
excitation of discrete quantum levels [6]. The existence
of recurrences has been investigated in atomic [7–15] and
molecular [16–19] wave packet evolution. Study of some of
the periodically driven quantum systems [20–22], and two-
degree-of-freedom systems such as stadium billiard [23]
indicates the presence of quantum recurrences in higher
dimensional systems as well. Recently it is proved that
the quantum recurrences are generic to periodically driven
system which may display chaos in their classical counter-
part [24]. In this paper, we study the phenomena of dy-
namical recurrences in general higher dimensional system,
and provide mathematical foundations to the phenomena
by calculating recurrence times, using semiclassical secular
perturbation theory. At these time scales, namely classical
period and quantum recurrence time, an initial excitation
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produced in the system displays its full or partial reap-
pearance.

A quantum wave packet in its early evolution follows
classical mechanics and it reappears after a classical pe-
riod following classical trajectory. Later, following wave
mechanics it spreads and collapses, however, the discrete-
ness of the quantum world leads to its restructuring. We
show that, (i) the phenomena of dynamical recurrences
occur in higher dimensional quantum systems provided
that at least two of its degrees of freedom are coupled. (ii)
Furthermore we explain that, (a) the nonlinearity of the
uncoupled systems, and, (b) the initial conditions on the
excitation contribute to the classical and the quantum re-
currence times occurring in the coupled multi-dimensional
systems. (iii) We also study the interdependence of these
time scales for different kinds of dynamical systems.

We write the general Hamiltonian of a system with any
of its two degrees of freedom coupled [25,26], as

H = H0(I) + λHc(I, θ) (1)

where, H0 is the Hamiltonian of the system in the ab-
sence of coupling, expressed in the action coordinates
I = (I1, I2). Moreover, Hc is the coupling Hamiltonian
which describes coupling between I and is periodic in an-
gle, θ = (θ1, θ2), for nonlinear resonances in the system.
The parameter λ describes the strength of the coupling.
We express the coupling Hamiltonian as,

Hc =
∑

n

Hn(I)einθ , (2)
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where n = (n1, n2). Whenever the frequencies Ω =
∂H0/∂I obey the relation, nΩ = n1Ω1 + n2Ω2 = 0,
resonances occur in the system.

We may find classical chaos in the two degrees of free-
dom system, as a function of the coupling strength, when-
ever the two degrees of freedom are coupled. We con-
sider that the coupling exists between I1 and I2. Within
the region of resonance we find slow variations in ac-
tion, hence, following the method of secular perturba-
tion theory [27], we average over faster frequency, and
get the averaged Hamiltonian for the Nth resonance, as
H̄ = H̄0(I) + λV cos(Nϕ). Here, ϕ = θ1 − (M/N)θ2,
I = I1 is the action corresponding to the angle θ1, V is
the Fourier amplitude, and M and N are relatively prime
integers [25,26]. The action I2 becomes the constant of
motion. Moreover, H̄0(I) expresses uncoupled averaged
Hamiltonian. In case the coupling exists between N de-
grees of freedom, we may apply the semi-classical secular
perturbation technique (N − 1) times to study the effect
of most dominant degree of freedom.

The energy of the excitation changes slowly when we
produce it in the vicinity of Nth resonance of the higher
dimensional system and it is narrowly peaked. Therefore,
we expand the unperturbed energy, H̄0(I), by means of
Taylor’s expansion around mean action I0, and keep only
the terms up to second order [28]. As a result, we express
the Hamiltonian of the system, governing the evolution of
the excitation in the vicinity of Nth resonance, as

H̄ ∼= H̄0(I0) + ω(I − I0) +
ζ

2
(I − I0)2 + λV cos(Nϕ). (3)

Here, H̄0(I0) is the energy of the uncoupled system at the
action I = I0, and ω expresses the first order derivative
of H̄0 with respect to action calculated at I0 and defines
classical frequency of the excitation. The parameter ζ de-
fines the nonlinear dependence of the energy of the system
on the quantum number.

We introduce the transformation Nϕ = 2θ and quan-
tize the dynamics around theNth resonance by quantizing
the action [29,30], that is,

I − I0 =
�

i

∂

∂ϕ
=
N�

2i
∂

∂θ
. (4)

As a result, the Hamiltonian of the resonant system in the
quantum domain reads

H̄ = −N
2ζ�2

8
∂2

∂θ2
+

�

2i
Nω

∂

∂θ
+ H̄0(I0) + λV cos 2θ. (5)

Hence, the quantum mechanical system evolves according
to the Schrödinger equation, H̄ψk = Ekψk. Here, ψk is the
wavefunction of the system in the region of a resonance
and is, therefore, required to fulfill periodicity condition,
i.e. ψk(θ + π) = ψ(θ). The corresponding eigenvalue Ek

defines the eigen energy of the system. With the help of
transformation, ψk = φk exp (−2iωθ/(Nζ�)), we map the
Schrödinger equation on the Mathieu equation,

[
∂2

∂θ2
+ aν − 2q cos 2θ

]
φν = 0 , (6)

where,

aν =
8

N2ζ�2

[
Eν − H̄0 +

ω2

2ζ

]
, (7)

and

q =
4λV
N2ζ�2

. (8)

The π-periodic solutions of equation (6) correspond to
even functions of the Mathieu equation whose correspond-
ing eigenvalues are real [31]. These solutions are defined
by Floquet states, i.e. φν(θ) = eiνθPν(θ), where Pν(θ) is
the even order Mathieu function.

In order to obtain a π-periodic solution in ϕ-coordinate
we require the coefficient of ϕ in the exponential factor to
be equivalent to an even integer number, k. This condition
provides the value for the index ν as

ν =
2k
N

+
2ω
Nζ�

. (9)

Therefore, we may express the eigen-energy of the system
as

Ek =
N2ζ�2

8
aν(k)(q) − ω2

2ζ
+ H̄0(I0) , (10)

where, aν(q) is the Mathieu characteristic parameter [31].
In order to check this result we study the case of zero

coupling strength, that is λ = 0. In this case, the value for
Mathieu characteristic parameter becomes aν(q = 0) =
ν2. This reduces the quasi-energy, Ek, to equation (3) in
the absence of coupling term, that is, λ = 0, and in addi-
tion leads to define k as (I − I0)/�.

The initial excitation produced at I = I0 observes
various time scales at which it reappears completely or
partially during its evolution. In order to find these time
scales at which an excitation in the quantum mechanical
coupled higher dimensional system recurs, we employ the
eigenenergy Ek of the system [33,34].

These time scales, T (i)
λ , are inversely proportional to

the frequencies ω(i), where ω(i) = (i!)−1
�

(i−1)∂(i)Ek/∂I
(i),

when calculated at I = I0. The index i describes the or-
der of differentiation of the quasi energy Ek. With the in-
creasing values for i we have smaller frequencies indicating
longer higher-order recurrence times.

The time scale, T (1)
λ = T

(cl)
λ , and defines classical pe-

riod of the higher dimensional coupled system and is in-
versely proportional to ω(1). In the absence of coupling
ω(1) reduces to ω. The time scale, T (2)

λ = T
(Q)
λ , and de-

fines quantum mechanical recurrence time in the higher
dimensional coupled systems. It has inverse proportional-
ity with ω(2). Here, we have ω(2) = (2!)−1

�∂2Ek/∂I
2|I=I0 .

On substituting the value for Ek from equation (10)
in the definition for ω(1) and ω(2), we obtain the classical
period as,

T
(cl)
λ = [1 −M (cl)

o ]T (cl)
0 , (11)

and the quantum recurrence time for the coupled sys-
tem as,

T
(Q)
λ = [1 −M (Q)

o ]T (Q)
0 . (12)



Farhan Saif: Nature of quantum recurrences in coupled higher dimensional systems 89

Here, the time scales T (cl)
0 (≡ 2πω−1) defines classical pe-

riod and T
(Q)
0 (≡ 2π( 1

2!�ζ)
−1) defines quantum revival

time in the absence of coupling. The time modification
factors M (cl)

o and M (Q)
o are given as,

M (cl)
o = −1

2

(
λV ζ

ω2

)2 1
(1 − µ2)2

, (13)

and

M (Q)
o =

1
2

(
λV ζ

ω2

)2 3 + µ2

(1 − µ2)3
(14)

where,

µ =
N�ζ

2ω
. (15)

Equations (11) and (12) express the classical period and
the quantum revival time in the presence of coupling be-
tween two degrees of freedom as a function of the cou-
pling strength λ, nonlinearity ζ associated with the un-
coupled system and other characteristic parameters of the
system. Analysis of equations (13) and (14) leads us to
the conclusion that the first terms of the modification fac-
tors M (cl)

o and M
(Q)
o depend quadratically on the cou-

pling strength λ, and, on the nonlinearity ζ present in
the initial uncoupled system. Whereas they are inversely
proportional to the fourth power of frequency ω in both
the cases. The second terms are function of µ, defined in
equation (15). Hence, for the coupling strength λ = 0 we
find T (cl)

λ = T
(cl)
0 and T (Q)

λ = T
(Q)
0 .

Case a: in the absence of nonlinearity, i.e. for ζ = 0,
the time modification factor for the classical period M (cl)

o

and for the quantum recurrence time M (Q)
o vanish, which

is evident from equations (13) and (14). Thus, for lin-
ear coupled systems the quantum recurrences take place
at infinite time, i.e. T (Q)

λ = T
(Q)
0 = ∞. Nevertheless,

the system displays recurrences after the classical period,
T

(cl)
λ = T

(cl)
0 = 2π/ω. Hence, in the coupled linear higher

dimensional systems only classical periods exist.
Case b: for µ < 1, the time modification factors M (cl)

o

and M (Q)
o are related as,

M (Q)
o = −3M (cl)

o = 3α, (16)

where

α =
1
2

(
λV ζ

ω2

)2

. (17)

Thus, the classical period T
(cl)
λ and the quantum recur-

rence time T
(Q)
λ in the presence of coupling are related

with the T (cl)
0 and T (Q)

0 of the uncoupled system as

3T (cl)
λ

4T (cl)
0

+
T

(Q)
λ

4T (Q)
0

= 1. (18)

In the absence of coupling we find T (cl)
λ = T

(cl)
0 and T (Q)

λ =
T

(Q)
0 which fulfills equation (18).

The case may be achieved for a weak nonlinearity in
the dominant degree of freedom of the coupled system,
that is ζ � 1. The quantum recurrence time in coupled
system T

(Q)
λ and in uncoupled system T

(Q)
0 , depend in-

versely on nonlinearity in the system, and are therefore
much larger than classical periods T (cl)

λ and T
(cl)
0 in this

case.
As it follows from equation (16), the quantum recur-

rence time T (Q)
λ reduces by 3αT (Q)

0 , whereas, the classical
period T (cl)

λ increases by αT (cl)
0 . Hence, we may conclude

that the quantum dynamical recurrence time T (Q)
λ reduces

much faster than the classical period T (cl)
λ in the presence

of a small nonlinearity in the system.
Since, the modification factor α displays direct pro-

portionality with the square of the nonlinearity param-
eter, ζ2, in the system. In the asymptotic limit, i.e. for
ζ approaching zero, we get the result T (cl)

λ = T
(cl)
0 and

T
(Q)
λ = T

(Q)
0 = ∞ as discussed in case a.

Case c: in the presence of a relatively larger value of
the nonlinearity parameter and/or highly quantum me-
chanical systems, we may consider µ > 1. We have the
time modification factors related as

M (Q)
o = M (cl)

o = −β, (19)

where

β =
1
2

(
4λV
N2ζ�2

)2

. (20)

Thus, the classical period T
(cl)
λ and the quantum recur-

rence time T
(Q)
λ in the presence of coupling are related

with the T (cl)
0 and T (Q)

0 of the uncoupled system as

T
(cl)
λ

T
(cl)
0

− T
(Q)
λ

T
(Q)
0

= 0. (21)

The time modification factors for the classical period and
the quantum recurrence time vanish as β reduces to zero.
Therefore, equations (11) and (12) provide us the asymp-
totic result, that is, T (cl)

λ = T
(cl)
0 and T (Q)

λ = T
(Q)
0 and we

find that equation (21) holds.
The parameter β, which determines the modification

both in classical period and in quantum recurrence time,
is inversely dependent on the fourth power of the Planck’s
constant �. Hence, for highly quantum mechanical cases
we note that β approaches zero and the times of recurrence
remain unchanged.

The classical period is inversely proportional to the
classical frequency, ω(1), which is controlled by the initial
excitation energy. We note that: (i) in presence of no non-
linearity (case a), only classical period exists as discussed
above. Hence as frequency approaches zero, the classical
period becomes infinity which is the case of an open sys-
tem; (ii) for small value of the nonlinearity parameter in
case b, as frequency becomes very small the classical pe-
riod T (cl)

λ and quantum recurrence time T (Q)
λ [32] changes

following a square law dependence on coupling strength,
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λ, as we find from equations (16) and (17). However, for
larger values of the frequency the times T (cl)

λ and T (Q)
λ re-

main unchanged; (iii) for relatively large value of the non-
linearity parameter, as in case c, the situation is opposite.
For smaller value of frequency we find larger value for N ,
therefore, the modification factor reduces to zero. Hence,
from equations (19) and (20), we find that T (cl)

λ = T
(cl)
0

and T
(Q)
λ = T

(Q)
0 . However, for larger values of the fre-

quency, we note that T (cl)
λ and T (Q)

λ vary following square
law behavior as a function of modulation strength, λ.

For an excitation produced at the center of a resonance
the quantum evolution of the system is characterized by
equation (5) under the consideration of θ ≈ 0. Hence,
the secular Hamiltonian of the coupled system for exact
resonance case is

H̄ ≈ −N
2ζ�2

8
∂2

∂θ2
− 2λV θ2 . (22)

Equation (22) describes the Hamiltonian of a harmonic
oscillator. Hence, this provides an evidence that if the ex-
citation originates initially from the center of a resonance
it will experience recurrences after each classical period,
as shown in Figure 1a. The quantum recurrence time now
is T (Q)

λ = T
(Q)
0 = ∞. Thus the evolution is the same in

every dynamical system in the case of exact resonance.
The oscillator frequency is N

√
ζλV . Thus in case the cou-

pling strength, λ, reduces to zero the harmonic oscillator
behavior disappears. The system now possesses only the
classical period T

(cl)
0 and the quantum recurrence time

T
(Q)
0 of the uncoupled system, we find this behavior in

Figure 1b. This effect provides us information about level
spacing around the center of a resonance [35] as well. For
harmonic oscillator the spacing between successive levels
is equal, hence we conclude that for quasienergy levels of
the Floquet operator belonging to the center of resonance
the level spacing is always equal.

We conclude that in higher dimensional systems a cou-
pling results in modifying the recurrence times available
for the uncoupled systems so far as the dynamics is con-
sidered close to a nonlinear resonance. The phenomena is
helpful to improve the efficiency of the Recurrence Track-
ing Microscope [36]. The current results may help to iden-
tify [5] quantum acceleration modes (QAM) [37] and un-
derstand the dynamics associated. Moreover the suggested
treatment may reveal the understanding of the dynamics
of Bose Einstein Condensates in coupled systems [38].
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